
Section 9   
Fundamentals of Algorithms for 
Constrained Optimization 

Follows N & W, section 15.  



9.1 TYPES OF CONSTRAINED 
OPTIMIZATION 
ALGORITHMS 



Types of Optimization Algorithms 
�• All of the algorithms solve iteratively a simpler 

problem.  
�– Penalty and Augmented Lagrangian Methods. 
�– Sequential Quadratic Programming.  
�– Interior-point Methods.  

�• The approach follows the usual divide-and-
conquer approach:  

�• Constrained Optimization- 
�• Unconstrained Optimization 
�• Nonlinear Equations 
�• Linear Equations 



Quadratic Programming Problems 

�• Algorithms for such problems are interested to 
explore because 
�– 1. Their structure can be efficiently exploited.  
�– 2. They form the basis for other algorithms, such as 

augmented Lagrangian and Sequential quadratic 
programming problems.  



Penalty Methods 

�• Idea: Replace the constraints by a penalty term.  
�• Inexact penalties: parameter driven to infinity to 

recover solution. Example:  

�• Exact but nonsmooth penalty �– the penalty 
parameter can stay finite.  

 

x* = arg min f (x) subject to c x( ) = 0

xµ = arg min f x( ) + µ
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x( ); x* = limµ xµ = x*

Solve with unconstrained 
optimization 

 
x* = arg min f (x) subject to c x( ) = 0 x* = arg min f x( ) + µ ci x( )

i E

; µ µ0



Augmented Lagrangian Methods 

�• Mix the Lagrangian point of view with a penalty 
point of view.   

 

x* = arg min f (x) subject to c x( ) = 0

xµ , = arg min f x( ) ici
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x* = lim * xµ ,  for some µ µ0 > 0



Sequential Quadratic Programming 
Algorithms  

�• Solve successively Quadratic Programs. 

�• It is the analogous of Newton�’s method for the case 
of constraints if  

�• But how do you solve the subproblem? It is possible 
with extensions of simplex which I do not cover. 

�• An option is  BFGS which makes it convex.  

 

min p
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Interior Point Methods 
�• Reduce the inequality constraints with a barrier 

�• An alternative, is use a penalty as well:  

�• And I can solve it as a sequence of 
unconstrained problems! 
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9.2 MERIT FUNCTIONS AND 
FILTERS  



Feasible algorithms  

�• If I can afford to maintain feasibility at all steps, 
then I just monitor decrease in objective 
function.  

�• I accept a point if I have enough descent.  
�• But this works only for very particular 

constraints, such as linear constraints or bound 
constraints (and we will use it).  

�• Algorithms that do that are called feasible 
algorithms.  



Infeasible algorithms 
�• But, sometimes it is VERY HARD to enforce 

feasibility at all steps (e.g. nonlinear equality 
constraints).  

�• And I need feasibility only in the limit; so there is 
benefit to allow algorithms to move on the outside of 
the feasible set.  

�• But then, how do I measure progress since I have two, 
apparently contradictory requirements:  
�– Reduce infeasibility (e.g.                                ) 
�– Reduce objective function.  
�– It has a multiobjective optimization nature!  

 
ci x( )

i E

+ max ci x( ),0{ }
i I



9.2.1 MERIT FUNCTIONS 



Merit function 

�• One idea also from multiobjective optimization: 
minimize a weighted combination of the 2 
criteria.  

�• But I can scale it so that the weight of the 
objective is 1.  

�• In that case, the weight of the infeasibility 
measure is called �“penalty parameter�”. 

�• I can monitor progress by ensuring that         
decreases, as in unconstrained optimization.  

 
x( ) = w1 f x( ) + w2 ci x( )

i E

+ max ci x( ),0{ }
i I

; w1,w2 > 0

x( )



Nonsmooth Penalty Merit Functions 

�• It is called the l1 merit function.  
�• Sometimes, they can be even EXACT. 
�•   

Penalty parameter 



Smooth and Exact Penalty 
Functions 

�• Excellent convergence properties, but very 
expensive to compute.  

�• Fletcher�’s augmented Lagrangian: 

�• It is both smooth and exact, but perhaps 
impractical due to the linear solve.   



Augmented Lagrangian 

�• Smooth, but inexact.  

�• An update of the Lagrange Multiplier is needed.  
�• We will not uses it, except with Augmented 

Lagrangian methods themselves.   
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Line-search (Armijo) for 
Nonsmooth Merit Functions 

�• How do we carry out the �“progress search�”? 
�• That is the line search or the sufficient reduction 

in trust region?  
�• In the unconstrained case, we had 

�• But we cannot use this anymore, since the 
function is not differentiable.  

f xk( ) f xk +
mdk( ) m f xk( )T dk ; 0 < <1, 0 < < 0.5



Directional Derivatives of 
Nonsmooth Merit Function 

�• Nevertheless, the function has a directional 
derivative (follows from properties of max 
function). EXPAND 

�• Line Search: 
�• Trust Region  

D x,µ( ); p( ) = limt 0,t>0
x + tp,µ( ) x,µ( )

t
; D max f1, f2{ }, p( ) = max f1p, f1p{ }

xk ,µ( ) xk +
m pk ,µ( ) mD xk ,µ( ), pk( );

xk ,µ( ) xk +
m pk ,µ( ) 1 m 0( ) m pk( )( );

0 < 1 < 0.5



And �…. How do I choose the 
penalty parameter?  

�• VERY tricky issue, highly dependent on the 
penalty function used. 

�• For the l1 function, guideline is:  

�• But almost always adaptive. Criterion: If 
optimality gets ahead of feasibility, make penalty 
parameter more stringent.  

�• E.g l1 function: the max of current value of 
multipliers plus safety factor (EXPAND) 
�–   



9.2.2 FILTER APPROACHES 



Principles of filters 

�• Originates in the multiobjective optimization 
philosophy: objective and infeasibility 

�• The problem becomes:  



The Filter approach 



Some Refinements 

�• Like in the line search approach, I cannot accept 
EVERY decrease since I may never converge.  

�• Modification:  
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9.3 MARATOS EFFECT AND 
CURVILINEAR SEARCH 



Unfortunately, the Newton step may 
not be  compatible with penalty  

�• This is called the Maratos 
effect.  

�• Problem:  

�• Note: the closest point on 
search direction (Newton) 
will be rejected ! 

�• So fast convergence does 
not occur 



Solutions?   

�• Use Fletcher�’s function that does not suffer 
from this problem.  

�• Following a step:  
�• Use a correction that satisfies 

�• Followed by the update or line search: 

�• Since          compared to                           
corrected Newton step is likelier to be accepted.         

xk + pk +
2 �ˆpk

c xk + pk + �ˆpk( ) =O xk x*
3( ) c xk + pk( ) =O xk x*

2( )



Section 11 
Algorithms for Nonlinear Optimization.  
Follows N & W, 17 and 19.  



Algorithms for constrained 
optimization 

�• It is the story of putting ALL these blocks 
together.  

�• Augmented Lagrangian 
�• Interior Point 
�• Sequential Quadratic Programming 



11.1 AUGMENTED 
LAGRANGIAN 



AUGLAG: Equality Constraints 

�• The augmented Lagrangian: 

�• Observation: if   

 

= *; µ µ0 xLA x*, *,µ( ) = 0;
xx
2 LA x*, *,µ( ) = xx

2 L x*, *,µ( ) + µ c x*( )( )T c x*( )( )



AUGLAG: SOC 

�• So x* is a stationary point for Auglag for exact 
multipliers �… but is it  a minimum?  

�• Yes, for mu sufficiently large. 

�• So it is *almost* as solving unconstrained problem 
�… but how do I find multiplier estimates?   

  

xx
2 LA x*, *,µ( ) Y Z

T

xx
2 LA x*, *,µ( ) Y Z + µ c x*( )Y( )T c x*( )Y( ) =

ZT
xx
2 LA x*, *,µ( )Z *

* *+ µ c x*( )Y( )T c x*( )Y( )
0 for µ  suff large. 



Multiplier Estimates Auglag 

�• At the current estimate, solve problem 

�• The obvious choice: 

�• What do I do if I converge lambda but x* is not 
feasible? Increase the penalty mu (it will have to 
end increasing eventually).   



The general case 

�• The bound constrained formulation. Slacks. 

�• The problem:  



The augmented Lagrangian 

�• The new AugLag 

�• The bound constrained optimization problem: 

�• Same property: if Lagrange multiplier is the optimal 
one for eq cons and mu is large  enough then x* is a 
solution !  



Practical AugLag alg:  LANCELOT 

Main 
computation:  
Use bound 
constrained 
projection.  

Forcing sequences 



Solving the bound constrained 
subproblem 

�• It is an iterative bound constrained optimization 
algorithm with trust-region: 

�• Each step solves a bound constrained QP (not 
necessarily PD), same as in your  homework 4.  

�• The difference: after a subspace solve: compute the 
new derivative and update TR.   



11.2 INTERIOR-POINT 
METHODS 



Outline 

�• Same idea as in the case of the interior-point 
method for QP.  

�• Create a path that is interior with respect to the 
Lagrange multipliers and the slacks that depends 
on a smoothing parameter mu.  

�• Drive mu to 0.  



Interior �–point, �“smoothing�” parth 

�• Formulation (with slacks) : 

�• Interior-point (smoothing path; mu=0: KKT)  



Barrier interpretation 

�• The nonlinear equation is the same as the KKT 
point of the barrier function:  



Newton Method:  

�• Linearization for fixed mu: 



Choose the step 

�• The new iteration: 

�• Where: 

�• And,    
= 0.99 0.995



How do I measure progress?  

�• Merit function: 

�• I try to decrease it as much as I can.   



Basic  Interior-Point Algorithm 



How to solve the linear system 

�• Rewriting the Newton Direction: 

�• Can use indefinite factorization LDLT.  
�• Or, projected CG (since it is in saddle-point 

form)  



Linear System, part II 

�• Or, we can eliminate p_s and use LDLT 

�• And even p_z:  



How do we deal with nonconvexity 
and non-LICQ? 

�• Regularization 

�• Choose delta so that signature of the matrix 
corresponds to positive definiteness of reduced 
matrix:  

�• For signature, can use LDLT 



But, how do I know how far to go in 
a direction?  

�• Backtracking search for merit function (based on 
barrier interpretation) : 

�• Directional derivative (for line search)  

p
c x( ) =

p
c x( )T c x( ) =

c x( )
c x( ) c x( ) p c x( ) 0

c x( ) p
c x( ) p c x( ) p c x( ) = 0, c x( ) p 0

0 otherwise



How do we update barrier 
parameter?  

�• Decrease of barrier (example): 

�• Step update:   



A practical interior-point algorithm 



11.3 SEQUENTIAL QUADRATIC 
PROGRAMMING 



Idea:  

�• Start with equality constrained problem: 

�• Find the solution          of problem with 
quadratic objective and linearized constraints 
called quadratic program. 

�• Define:                             which gives Newton�’s.  

pk ,lk

k+1 = lk ; xk+1 = xk + pk



Extension to inequality constraints. 

�• For problem: 

�• Solve successively the quadratic program: 

�• E.g use a BFGS approximation (though density 
an issue) and interior point (defined in section 
10).   



A sequential Linear-Quadratic 
Program 

�• Analogous with the projection/subspace 
minimization algorithm.  

�• In Linear phase, solve (e.g by interior point) 

�• Variation: 
(infeas) 

+ 1
2
pT p



Determine active set in linear phase 

�• For feasible algorithm: 

�• For infeasible algorithm: 

�• Backtrack merit function on    to obtain Cauchy pt    

pc

pLP pC



Equality Constrained QP: EQP 

�• Determine the working active set: 

�• Solve EQP:  

�• E.g by truncated, projected CG.  

 Wk Ak or Vk( )



Total Step 

�• Start from Cauchy Direction: 

�• Choose       by backtracking using the same 
merit function as in first stage. (effectively, a 
dogleg).  

�• If the LP solution is infeasible, increase the 
penalty.    

Q


